Tomographie sismique des cratons et des ceintures de roches vertes: exploration régionale pour le diamant et l'or

Stéphane Faure (Consorem UQAM) Stéphanie Godey (European Mediterranean Seismological Centre) Francine Fallara (URSTM – UQAT)

Utilisation des outils et méthodes du Consorem Québec Exploration, Château Frontenac, 22 Novembre 2010

Plan

Introduction: tomographie sismique et modèle utilisé

Partie I

NSORem

Relation spatiale 3D entre les champs de kimberlites de l'Amérique du Nord et l'architecture du manteau archéen

Partie II

Les ceintures de roches vertes et la signature sismique du manteau sous la Province de Supérieur

Conclusion

CONSOREM

Principes

Consortium de recherche en exploration minérale

LAB: Lithosphere-Asthenosphere Boundary

Consortium de recherche en exploration minérale

Les cratons archéens ont une plus grande flottabilité (longévité)

Craton et manteau lithosphèrique

Comportement des ondes sismiques dans des milieux de composition et de température différentes

INSOREM

Tomographie sismique - Principes

Couverture des rais

INSOREM

207 séismes entre 4,7 et 7 de magnitude (1995 à 1999) 142 stations globales (GSN) et régionales (Godey 2002)

Modèle tomographie - Amérique du Nord

DNSOREM

PARTIE I

DNSOREM

Champs de kimberlites et l'architecture du manteau archéen

Consortium de recherche en exploration minérale

Racine cratonique et kimberlites

Âges des diamants

Gurney et al. 2005

INSOREM

Problématique

But du projet

- Établir la corrélation entre la croûte archéenne et le manteau appauvri
- Relation spatiale entre les kimberlites et l'architecture du manteau
- Proposer de nouveaux secteurs pour l'exploration en Am-Nord

Tomographie et la croûte archéenne

em

NSOR

Variation de vélocité séismique et les cratons exposés en surface

Tomographie et croûte archéenne

Extension de la croûte archéenne sous les roches de couvertures

onsorem

Vélocité moyenne sous les cratons archéens

Volume des variations de vélocité ≥+6%

Interprété comme les vestiges de racines archéennes et la base du LAB

ONSOR

eM

em

NSOR

Consortium de recherche en exploration minérale

CONSOREM

Profondeur de stagnation des magmas kimberlitiques

Thermobarométrie et compositions de grenats dans xénolithes mantelliques à l'époque de la mise en place des kimberlites

Indication de la profondeur Lithosphere-Asthenopshere Boundary (LAB) et du lieu de formation des magmas kimberlitiques*

> *Grégoire et al. 2006 Consortium de recherche en exploration minérale

Profondeur de stagnation des magmas kimberlitiques

IONSOREM

Donne la profondeur approximative de la base de la lithosphère à 20-30 km

22

CONSOREM Kimberlit

Kimberlites et profondeurs du LAB pétrologique

Racines des cratons Ak et les kimberlites

Racines des cratons Ak et les kimberlites

ONSOREM

0 2005

Craton du Supérieur et les kimberlites

Consortium de recherche en exploration minérale

DNSOREM

Signature séismique - Province Supérieur

Métasomatisme dans le Sud du Supérieur

Consortium de recherche en exploration minérale

Métasomatisme dans le Sud du Supérieur

Lithosphère affectée par différents événements thermiques Vitesses sismiques

INSOREM

Zones favorables pour l'exploration

onsorem

Modèle

Faure et al. in press

PARTIE II

em

INSOR

Ceintures de roches vertes et signature sismique du manteau sous le Supérieur

Consortium de recherche en exploration minérale

Ceintures de Roches Vertes (CRV) du Supérieur*

CRV au Sud et au Centre du Supérieur

Orientation CRV aro Noennes

34

- Dimension^e éthément, minéralisations connues diminuent vers le Nord
- Province de Supérieur
 Métamorphisme augmente vers le Nord: prehnite-pumpellyite à amphibolite inf.
- Abitibi : + grande ceinture et + riche en Au du Monde (~100 000 km²; 6400 t Au)

*Compilation mondiale des CRV par V. Pearson (2006)

Consortium de recherche en exploration minérale

Ceintures de Roches Vertes (CRV) du Supérieur

CRV au Nord du Supérieur

Orientation N-S à NO

+ Petites (10 à 100km longueur), très étirées, démembrées, régulièrement espacées, formes complexes
Métamorphisme: Amphibolite à Granulite

Pas de mines Au ou de métaux de base (encore!)

CRV du Supérieur et les vélocités séismiques

em

JSOR

Age de Terranes

Données de GSC, OGS, MRNQ, J. Perceval compilation, Boily ea 2009

CRV du centre et du Nord du Supérieur

CRV du centre et du Nord du Supérieur

125 km Variation vélocité 5 6 7 8 9 C a 200 km

NO dominante (1 foliation)

DNSOREM

E-O superposant la NO (2 foliations)

ENE dominante

Retro-déformation dans le manteau

Reconstruction tectonique

Retro-déformation dans le manteau

Variation vélocité 125 km 5 6 7 8 9 Qalluviartuuq Kogaluk Vizien-Duvert Venus-Moyer La Grande B 200 km

Implique un couplage croûte-manteau et déplacement de + 200 km

CRV dans le Grand

CRV dans le Grand

Implication du modèle pour la fertilité des CRV

CONSOREM

Consortium de recherche en exploration minérale

CONSOREM

CRV dans le Grand

Dépôt, indice 125 km \bigcirc Au-(Ag) Ni-PGE, Cr Δ Cu, Zn Qalluviartuuq Kogaluk • Gayot, NI, Pt-Pd Venus Coulon, Zn Zone 32 4,2 Mt @ 2,1 g/t Au La Grande 200 km

Implication du modèle pour la fertilité des CRV

CRV dans le Sud du Supérieur (Abitibi-Wabigon)

CRV dans le Sud du Supérieur (Abitibi-Wabigon)

Évidences d'une double subductions

DNSOREM

Oans

47

Western Superior Lithoprobe transect

ONSOREM

48

Transect LITHOPROBE N-S Abitibi

Évidences géochimiques

CONSOREM

TOme

Subduction fossilisée dans le manteau (section dans le modèle tomographique)

NSOR

em

Pourquoi l'Abitibi est si unique?

eM

ONSOR

Consortium de recherche en exploration minérale

ONSOREM

Oms

Au = Tardif, contemporain et rétrograde (schistes verts) dans le Supérieur

Gauthier, Trépanier, Gardoll al. 2007 SEG

Consortium de recherche en exploration minérale

Fertilité des grandes structures crustales Sud du Supérieur

ONSOREM

0 202

Fertilité des grandes structures crustales Sud du Supérieur

Conclusion

Kimberlites et cratons

Morphologie des racines cratoniques fertiles pour le diamant est défini pour la 1^{ière} fois

Les kimberlites sont disposées en périphérie des racines dans l'intervalle 170-200 km

Ceintures de roches vertes

Les ceintures de roches vertes (CRV) épousent la structure du manteau

L'Abitibi a laissé des cicatrices permanentes dans le manteau (subduction, plume): pas le cas dans le Moyen et Grand-Nord: dimension des CRV + petites? Mode de formation différent? Moins fertiles pour les minéralisations?

Diminution de la superficie des CRV et l'augmentation du métamorphisme vers le nord sont vraisemblablement causés par la présence d'un manteau appauvri (souscompensation isostatique) au centre de la Province de Lac Supérieur **Documentation supplémentaire**

Rapports sur <u>www.consorem.ca</u>

Article dans Economic Geology, hiver 2011

Consortium de recherche en exploration minérale

DNSOREM